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The Enumeration Degrees

We say X ≤e Y if there is a c.e. operator Γ such that x ∈ X ⇐⇒ ∃⟨x,D⟩ ∈ Γ
with D ⊂ Y .

1 This is a positive analog of Turing reducibility. One can think of X ≤T Y as
X is ∆0

1(Y ). Here we can think of X ≤e Y as X is Σ0
1(Y

+), so that we can
only ask positive questions about Y .

2 ≤e is a preorder on P(ω) and the corresponding degree structure induced on
P(ω) is called the Enumeration degrees denoted by (De,≤e).

3 The enumeration jump of a set X is defined by X ′ = KX ⊕KX where
KX := ⊕n∈ωΓn(X)

4 The Turing degrees (DT ,≤T ) embed into the enumeration degrees as a
partial order under the map i : A → A⊕A and this embedding respects join
and jump. The image of this mapping are the total sets: Sets X for which
X ≤e X.

5 DT and De are both upper semilattices with a least element. The least
element in DT are the computable sets while in De the least element 0e are
the c.e. sets.
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Local Structure

Let D≤0′

T be the Turing degrees below 0′T while D≤0′

e denote the enumeration
degrees below 0′e. Both of these sets form a countable ideal in their respective
degree structures.

1 D≤0′

T are precisely the degrees made up of ∆0
2 sets while D≤0′

e are degrees
made up of Σ0

2 sets.

2 The image of D≤0′

T under i forms a subset of D≤0′

e .

3 These two structures are not elementarily equivalent as partial orders: For
example Sacks showed that there are minimal Turing degrees below 0′T while
Guttridge showed that the enumeration degrees are downward dense.

4 In fact given X <e Y ≤ 0′e there is a Z ∈ (X,Y ) so that D≤0′

e is actually
dense.
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Ahmad pairs

In her thesis, Ahmad constructs a pair (A,B) of ∆0
2 sets such that A ̸≤e B but

∀Z <e A(Z <e B). Such pairs were later on named Ahmad pairs by the
community. Ahmad in Ahmad and Lachlan [1998] also shows that if (A,B) form
an Ahmad pair, then (B,A) cannot be an Ahmad pair.

1 This phenomenon is unique to the Σ0
2 enumeration degrees and cannot

occur in the c.e. or the ∆0
2 Turing degrees.

2 Slaman and Soare solved the extension of embeddings problem in the c.e.
Turing degrees where given finite partial orders P ⊂ Q, when every
embedding of P can be extending to an embedding of Q. They provide 2
obstructions barring which an extension is always possible.

3 In Lempp et al. [2005] solve the extension of embeddings problem for the Σ0
2

enumeration degrees, where the only added obstruction to extension is the
phenomenon of Ahmad pairs.
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Recently several researchers have been focusing on solving the ∀∃ theory of the
Σ0

2 enumeration degrees. This has resulted in renewed interest in Ahmad pairs
with the following two recent results:

1 In Goh et al. [2022] the authors extend Ahmad’s result to show that if
(A,B) is an Ahmad pair, then (B,C) cannot be an Ahmad pair for any C.
This shows that the right and left halves are disjoint.

2 They also construct a so called weak Ahmad triple, sets (A,B0, B1) such
that A is not the left half of an Ahmad pair, A|eB0, B1 and ∀Z <e A we
have Z ≤e B0 or Z ≤e B1.

3 In Kalimullin et al. [2024] the authors show that if (A,B) form an Ahmad
pair, then A⊕B <e 0

′.

In this talk I will present recent results extending and generalizing some of the
work above.
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The main result we have is the following:

Definition

The tuple (A,B0, ..., Bn−1) forms an Ahmad n pair if A|eBi∀i < n and for any
Z <e A there is an i < n such that Z ≤e Bi.

Theorem

If (A,B0, B1, ..., Bn−1) form an Ahmad n pair, then A ∈ low3 and
⊕i<nBi ̸∈ low3.

Corollary

If (A,B) form an Ahmad pair, then A ∈ low3 and B ̸∈ low3. Therefore the left
and right halves are disjoint.
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The left half

Note that if (A,B) form an Ahmad pair, then the set {Z : Z <e A} is an ideal.
In particular A is join irreducible.

Theorem

Let f, g be computable. There is a computable function h such that
{Γh(n)(0

′
e)}n = {Γf(n)(0

′
e)}n ∩ {Γg(n)(0

′
e)}n

Proof.

Recall that the Σ0
2 sets are precisely those which are c.e. relative to 0′. So let

{W 0′

f(n)}n and {W 0′

g(n)} be the uniform families of Σ0
2 sets. Then we define h(n)

as follows:

x ∈ W 0′

h(⟨e,i⟩),s ⇐⇒ x ∈ W 0′

f(e),s ∩W 0′

g(i),s and W 0′

f(e),s ↾x = W 0′

g(i),s ↾x .
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The left half

Theorem

If (A,B0, ..., Bn−1) form an Ahmad n pair, the ideal {Z : Z <e A} has a uniform
enumeration.

Proof.

By the parameter theorem the ideals {Z : Z ≤e A} and {Z : Z ≤e Bi} have
uniform enumerations. Therefore so does their intersection
Fi := {Z : Z ≤e A,Bi}. Then F = ∪i<nFi has a uniform enumeration as well
and F = {Z : Z <e A}.

We call a uniform enumeration of {Z : Z <e A} an Ahmad sequence for A.

Theorem

The following are equivalent:

1 A has an Ahmad sequence {Γf(n)(0
′
e)}.

2 X = {n : Γn(A) <e A} is ∆0
4.

3 A is low3.
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The left half

Proof.

(1 =⇒ 2) X ≤e A
⟨3⟩ and so is always Π0

4. Using the Ahmad sequence it also
has a Σ0

4 definition.
(2 =⇒ 3) We will show that A⟨3⟩ ≤e X below. Then A⟨3⟩ ∈ Σ0

4 so A⟨3⟩ ≤e 0
⟨3⟩.

(3 =⇒ 1) Note that X ≤e A
⟨3⟩ and so X has a Σ0

4. Let

e ∈ X ⇐⇒ ∃n∀m∃i∀jR(e, n,m, i, j)

Then using this we can define an Ahmad sequence {Ae,n} for a such that if
n ∈ X then ∃e(Ae,n = Γn(X)) while if n ̸∈ X then Ae,n is finite for every e.
We define Ae,n as a Σ0

2 approximation which agrees with Γn(X) on even stages
and at odd stages we put in 0/1 according to the Σ4 definition, details on board.
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The left half

Lemma

There is a computable function g such that Γ
[i]
g(e) is either ω or a finite initial

segment of ω for every e, i ∈ ω and:

1 e ∈ A⟨3⟩ ⇐⇒ Γ
[i]
g(e)(A) is a finite initial segment of ω for every i

2 e ̸∈ A⟨3⟩ ⇐⇒ ∃i(Γ[i]
g(e)(A) = ω)

Proof.

Let e ∈ A ⇐⇒ ∀i∃j∀kR(e, i, j, k) where ¬R(e, i, j, k) ≤e A. Then define g as
follows:
Given an e, let Xe be the set where we enumerate j into X

[i]
e if ∀j′ < j we find a

k with ¬R(e, i, j′, k). Then Xe ≤e A and by construction if j0 < j1 and

j1 ∈ X
[i]
e then j0 ∈ X

[i]
e . Since we can go from e → Xe uniformly, there is a

computable g such that Xe = Γg(e)(A).
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The left half

Definition

Let X,Y be Σ2 sets.

1 A good approximation to X is a computable sequence {Xs}s of finite sets
with infinitely many good stages GX := {s : Xs ⊂ X} such that
lims∈GX

Xs(n) = X(n) for every n.

2 A correct approximation {Ys} to Y with respect to a good approximation
{Xs} to X is an approximation where GX ⊂ GY and
lims∈GX

Ys(n) = Y (n).

Lemma

For any set X ≤e A with A non c.e. such that ∀i∃j ≤ ω(X [i] = ω ↾j) we can

uniformly build an enumeration operator Θ such that Θ(A) <e A ⇐⇒ X [i] is
finite for every i and Θ(A) ≥e A ⇐⇒ ∃i(X [i] = ω).

Corollary

A⟨3⟩ ≤e {e : Γe(A) <e A}.
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The left half

Proof.

Let X = ∆(A) and let {As}s be a good approximation to A. We shall build the
enumeration operator Θ to meet the requirements:

Re : Γe(Θ(A)) ̸= A ⇐⇒ X [≤e]is finite

At stage s = 0 let Θ = ∅.
At stage s+ 1, we have substages t ≤ s:
At substage t we do the following:

1 Let lt,s = l(Γt,s(Θ(As)), As). Then ∀x ≤ lt,s with x ∈ As, let ⟨x,D⟩ ∈ Γt,s

be the least axiom witnessing this. Then for every y ∈ D[≥t], add the axiom
⟨y,As⟩ into Θ.

2 Copy A ↾n where n = |∆[t]
s (As)| into the tth column by enumerating axioms

⟨⟨t, x⟩, {x} ∪As⟩ into Θ for every x ≤ n.

This ends the construction.
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Characterizing the left half

Definition

A is join n irreducible if for every A0, .., An <e A there is an i, j ≤ n with
Ai ⊕Aj <e A.

Theorem

A is the left half of an Ahmad n pair ⇐⇒ A is low3 and join n irreducible.

Proof.

If A is the left half of an Ahmad n pair it has an Ahmad sequence and is
therefore low3. It is easy to see that it must be join n irreducible.
For the converse we need the following lemma along with induction on n (details
on board).

Lemma

Let f be computable and F = {Γf(n)(A)}n be an ideal such that
∀n(A ̸≤e Γf(n)(A)). Then there is a Σ0

2 set B with A ̸≤e B and
∀X ∈ F(X ≤e B).
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Proof.

We will build a B by coding Γf(n)(A) into the nth column of B while ensuring
that A ̸≤e B. Let {As}s, {Bn,s}s be correct approximations to A,Γf(n)(A)

respectively with respect to a good approximation Ks to K. We will build an
enumeration operator Θ so that B = Θ(K) will meet the requirements:

Ne : A ̸= Γe(B)

Pn : Γf(n)(A) ≤e B
[n]

At stage s = 0, let Θ = ∅.
At stage s+ 1:

1 For e ≤ s let le,s = l(As,Γe,s(Bs)). Then ∀x < le,s with x ∈ Γe,s(Bs), pick
the least axiom ⟨x,D⟩ ∈ Γe which witnesses this. Now for all y ∈ D[>e]

enumerate the axioms ⟨y,Ks⟩ into Θ.

2 For n ≤ s if x ∈ Bn,s+1 = Γf(n),s+1(0
′
e) then for every new axiom

⟨x,D⟩ ∈ Γf(n),s+1 − Γf(n),s enumerate the axiom ⟨⟨n, x⟩, D⟩ into Θ.
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On the right half

Definition

A set G is A− Guttridge if there is a computable function f such that f(x, .) is
increasing, lims f(x, s) exists for every x and ⟨x, y⟩ ∈ G ⇐⇒ ∃s(f(x, s) > y or
f(x, s) = y and x ∈ A).

Lemma

Suppose (A,B) form an Ahmad pair. Then A⋄ ≤e B
⋄

Proof.

This is implict in Ahmad’s no symmetric Ahmad pair argument. Let G <e A be a
KA Guttridge set with f being the witnessing computable function. Then
G ≤e B and so KA ≤e B ⊕ 0′e and KA ≤ B ⊕ 0′e and hence A⋄ ≤e B

⋄.

Theorem

Suppose B ∈ low3. Then ∀A such that A ̸≤e B we can build an enumeration
operator Θ such that Θ(A) <e A and Θ(A)|eB.
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On the right half

Proof.

Suppose {Θn}n∈ω are a family of enumeration operators. Consider the statement
Θn(A) ̸≤e B for any n:

∀n,m∃x(x ∈ Θn(A) ∧ x ̸∈ Γm(B))or(x ∈ Γm(B) ∧ x ̸∈ Θn(A))

This statement is ≤e B
⟨3⟩ and is Σ4 if B is low3. Let ∃nSn where Sn is Π0

3 be a
Σ4 definition of the statement above.
We construct a Θ such that its columns Θ[n] correspond to Θn above. By the
recursion theorem, we may assume we know an index for Θ and so while
constructing Θ we can reason about the statement ∃nSn. We will ensure that
the following holds:

1 Sn =⇒ Θn(A) <e A

2 ¬Sn =⇒ Θn(A) ≡e A
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Proof.

Consider the following cases:

1 The statement is false: ∃n(Θn(A) ≤e B). Then ∀n¬Sn and so by
construction Θn(A) ≡e A for every n, a contradiction to A ̸≤e B.

2 The statement is true: ∀n(Θn(A) ̸≤e B). The we also have ∃nSn and so
Θn(A) <e A for some n and we are done!

To construct the Θn’s the the property that Sn ⇐⇒ Θn(A) <e A we just need
to use the lemma above!

We end with some questions:

1 Does the right half have to be high? (It is known that not all high bounds a
right half)

2 Is there a simpler proof of the fact that Ahmad pairs do not cup to 0′e?

3 Do each of the right halves of Ahmad n pairs have to be non low3?
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